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Introduction

As a result of the structural analysis conducted by various physical methods
[1..9], it was established that there are two main levels of SMS in the non-oriented
state of amorphous crystalline polymers of the spheruline structure — spherulites of
geometric shape close to the distorted sphere, possessing a microheterogeneous
crystalline structure, and a homogeneous amorphous part of a medium with a
disordered structure. In [10], a model of an non-oriented structure of amorphous-
crystalline polymers was proposed, which satisfactorily linked the indices of their
elastic properties with the parameters of the structure and the experimental data of the
author and other researchers.

Taking the characteristics of structural elements — spherulite and amorphous
phase [5, 7] as initial data, and neglecting the dissipative phenomena in the isolated
elements, in the first approximation we break the entire drawing process of the
polymer into a finite number of states with a fixed degree of deformation of the
spherulites. It was established earlier [3...5] that up to the values of the degree of
drawing equal to the natural 1< A4 <9, a direct genetic connection is maintained
between the initial spherulitic order and the orientation one, and also that with An
increase in the degree of drawing of A also increases the degree of anisotropy of the
material. These facts are the basis for the hypothesis of the existence of a quantitative
relationship between the parameters of the drawing of spherulites and the indices of
the mechanical characteristics of the medium in each of these states.

Many different supramolecular structures, occurring depending on the
conditions of obtaining and processing of polymers, cannot now be described in one
model of the mechanical properties of amorphous-crystalline polymers. The main
idea of this work is model fixation of a polymer of supramolecular structure that
changes with deformation.

Undoubtedly the most convenient object for studying the structural changes
taking place in polymers during deformation is monocrystals (Fig. 1a). However, the
main and the most common structural form is spherulite structure (Fig. 1 b), which is

formed during crystallization of amorphous crystalline polymers.
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a — the monocrystal; b — spherulite.
Figure 1 — The structural model of the structure of the polymer material

The structural model of spheruline structure of a polymer (see. Figure 1 b)
consists of two interconnected models that describe two states of supramolecular
structure of polymers: before deformation — a model of spherulite structure of
polymers in non-oriented state; after deformation — a model of spheruline structure of

polymers in oriented state.

Research & Results

A model of spheruline structure of a polymer can be represented as infinite
elastic isotropic medium [11], consisting of spheruline structure placed in a
homogeneous amorphous matrix. Following assumptions were adopted during the
construction of the model: spherulites have the same shape (spherical) and
dimensions; spherulites are located in the corners of the spatial lattice [11]; the
crystalline polymer medium is concentrated in spherulites (Fig. 2).

As a result of the orientation drawing, occurs uniform [6] in the direction of the

x; axis and with an unchanged volume of spherulites [7, 8] (o, = const), we will

model the orientational drawing as a uniform compression (stretching) of the space

with a coefficient 7 numerically equal to the stretching degree A of the polymer:

n=A. In this case, a uniform compression (stretching) of the spherulite actually
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occurs in the direction from the plane x,0x;, taken as the main one (Fig. 2). The
formulas for transforming the coordinates taking into account the invariance of the

volume of the spherulite will have the form x; =x; A, x, = x; =x, A7V2.

Two cases can occur: for A >1,
uniaxial stretching of the space takes
place (obtaining fibers and films by
drawing); when A<I1, uniaxial
compression of the space takes place
(obtaining fibers and films by rolling or

calendering).

The equation of spherulites with a

a b radius » (x{ +x3 +x3 =), undergoing
uniform stretching with the drawing

1 —an amorphous phase; 2 — spherulites coefficient A, as a result of substituting

(a crystalline phase); 3 — penetrating microfibrills; the formulas for the transformation of

4 — a model of internal structure of the spherulite

rdin. nd bringing i h
Figure 2 — A model of supermolecular spheruline coordinates and bringing it o the

structure of amorphous crystalline polymers in canonical form has the form

non-oriented (a) and oriented (b) state (x 1* )2 (x ; )2 N (x ; )2
A =1. (1)

A2 2 P2

The determining of relative volumetric medium filling with spherulites &, sizes

of spherulites in the shape of a sphere with a diameter d; type of packaging x and

cyclic symmetry in its structure have paramount value in building of a theory of
effective modules of spheruline structure in the first approximation
As characteristic that determines probable spatial lattice type, shape and type of

spherulites, we will use the exponent of bulk crystalline polymer material [12].

__ P~ Pa

, (2)
Ps —Pa

V4

where p —density of a sample; p,, p, —density of amorphous and crystalline phase

of a polymer, found by X-ray diffraction data.
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Considering the assumption that all crystalline part of the polymer is
concentrated in spherulites that consist of alternating lamellar crystalline regions and
interlamellar amorphous layers [13], we can say that the degree of crystallinity y is
associated with the relative volume of spherulite in a spatial lattice, filling the

medium with spherulites £ and compactness coefficient of a spatial lattice z [11].

E=x=ku, (3)

where k=d, /L, — a density coefficient of spherulites packing (0 <k <1); L, — the

distance between the centers of spherulites.
Coefficient of compactness of the spatial lattice, in the corners of which

spherulites are located, is determined by its type. The expression u = 7/6 — corresponds

the simplest cubic lattice; y=7/3 — body-centered cubic lattice; x=27/3 — face-

centered cubic lattice; u = «/57[/ 6 — hexagonal structure of cubic lattice.
Clearly, the most densely packed spheres with a radius d, /2, and boundary

filling of the spatial lattice, accord to this structure, when the spheres touch one
another, i.e. in d, = L. In this case k=1, and &= %= 4.

The task of this modeling of the spheruline supramolecular structure of a
polymer material is to determine the degree of influence of the polymer elastic
properties and its stress-strain state on the form of the spatial lattice, the shape and
the size of spherulites that will help to predict the change in the form of spatial lattice
in the corners of which spherulites are located, and the shape and size of the
spherulites themselves under any deformation of spheruline polymer structure. The
models of regularities of elastic constants influence on the shape and size of
spherulites and on kind of their mutual arrangement can be used in the modeling of
spheruline structures formed during the drawing of polymers.

In connection with the foregoing, we consider the mode of deformation of the
spherical crystalline phase, which is located in unlimited amorphous isotropic

environment that is exposed to stretching along the axisx; (Fig. 3).
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Figure 3 — Scheme of the stress-strain state of

spherulites in the polymer structure

Assuming that the structure of
amorphous and crystalline phase of the
polymer is isotropic medium, as well as that
spherulites are packed in a hexagonal lattice
and between them there are homogeneous
strain interaction, we will solve the problem

in a curvilinear coordinate system
(¢', ¢%, ¢°), which is associated with the

interface environment and the origin is at
the center of a spherulite.

As known from [14], the main local
basis vectors of curvilinear coordinate

system are defined by the formula:

& =0rlog", i=1,2,3 (4)
and is tangent to coordinate lines g', that pass through the point 7 =7 (ql , q2 , q3 )

. 1 27 3 . . - . .
Coordinates ¢, ¢°, g° uniquely determine the vector 7 in a curvilinear
coordinate system, and coordinates x;, x,, x; uniquely determine this vector in the

Cartesian coordinate system (Fig. 2). Cartesian coordinates x; and curvilinear

coordinates ¢’ can have different dimensions, ie curvilinear base components and

Cartesian coordinate systems can be different.
To take account of this, we need to determine the appropriate length of the

main vectors of the local coordinate system curvilinear basis:

2 2 2
0
A AT B 5 I . I v=1,2,3 (5)
oq” oq" oq"

and divide them by these vectors, ie:

— (6)

Local basis of the unit vectors ¢, is called physical basis in the scientific

literature, and its use is very convenient for solving physical problems.
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Since the spherulite has the shape of a sphere, we will use a spherical coordinate
system, which is a particular case of curvilinear coordinate system. Then, the position of

the vector 7 will be determined by spherical coordinates », 8, ¢ . From Fig. 2, we define

the Cartesian coordinates x,, x,, x5 through spherical coordinates 7, 8, ¢ .
xy=r-sin@-sinp, x, =r-sinf-cosep, x; =r-cosd, (7)

here with 0<r<w, 0<0<7, 0<p<2r.
Using equation (4) and expressions (7), we decompose unit vectors of the

spherical coordinate system by unit vectors of the Cartesian coordinate system.

e, =sinfsing-é, +sinfcosp-¢é, +cosb-é;,
€gp =r-cosfsing-é, +r-cosfcosp-é, —rsinf-e;, (8)

e, =r-sindcosg-é, —r-sinfsing-e, +0-¢;.

We put component dimensions of the basis of a curvilinear coordinate system
to the dimension of the vector 7 (or basis dimensions of Cartesian coordinates), ie
the unit. To do this, we divide the unit vectors of the spherical coordinate system by

their lengths (Lame parameters H, (v =1,2,3)) that are determined from equation (5).

As aresult, the system (8) can be rewritten as follows:

é() =sinfsing-é, +sinfcosp-é, +cosb-é;,
é(g) =cosOsing-¢, +cosfcosg-é, —sinb-é;, 9)

€(y) =Cos@-e —sing-e, +0-e;,

where e, (v =1,2,3) — adjusted or physical basis. Later braces, standing at the index,

will be dropped.
So orthogonal matrix of transition from Cartesian to spherical basis is written

as follows:

€, =ay e tdap-e;t+ap;z-e;,

€9 =ay "€ +ay "€; +ay; €3, (10)

QY

p = 0a31°€ Taz €, +dsz;-e;,
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where a; — components of orthogonal matrix of transition from Cartesian to

spherical basis:

a,; =sin@sin @, a,, =sinfcos g, a3 =cosd,
a,; =cosfsin g, ay, =cosbfcosg, a3 =—sind, (11)
a31 = COS @, a32 = _Sin ¢, a33 = O.

The reverse transformation implemented by the following equations:

€ =ajp €, +ay €y+axy -€,, (12)
€3 =0a13°€, Tay; €y +dsy-e,.
To determine the elastic properties (elastic modulus and Poisson coefficient) in
the direction of the axis of polymer stretching (axis x;) we consider the case of
longitudinal tensile of non-oriented spheruline structure.
During the stretching, a stress state occurs in spherulites, that, according to the

diadic presentation [11, 15], can be written as follows:

T=ee.o0,, + 16,0, +€.€.0,, +(

Cy t eyex)- Oy + (eyez + ezey) "0 + (ezex + exez) Oy (13)

where €., e, €. — single orts of Cartesian coordinate system; &

ys &z xx> O o

yyo Yzz T
normal stresses occurring on the perpendicular to the corresponding axes of the
coordinate system; o

o,., 0, —tangential tension occurring on the same fields.

xy> Y yzo

If we orient the axes in a way that on platforms of elementary volume, bounded
by spherical surface, tangential tensions are not present. Then equation (13) can be

rewritten as follows:
T=515101 +ézé262 +é3é303, (14)

where ¢é,, é,,€; — unit orts of the Cartesian coordinate system, x;, x,, X3;
o, 0,, 03 — tensions in major fields, perpendicular to the corresponding axes of the

coordinate system x;, X5, Xj.
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Submitting each of main tensions as the product of the average tension &, that

influences spherulites along the axis x5, and unknown constants o ° characterizing

the tension level of homogeneous interaction and the level of tension on the main

fields, we get the following:
T = (66,00 +6,6,0% +&,6,0% )5, (15)

Tension of homogeneous interaction between the spherulites result from
changes in stress-strain state of spherulites.

Tension tensor (15) in spherical coordinates (7) can be expressed as follows [11]:

c -~ = 0 ,= = 0 ,= = _0 - = = = o =
T = (e,e,a, +€yy0y +€,€,0, +(2,2, +ege,)-ar9)0'1, (16)

The unknown constants o ° in spherical coordinates are expressed through

Cartesian by substitution of expressions (12) in equation (15)

TC = lé,ér (a1210'1° +ahol +aloy )+ €98y (aflc)'lo + a3 03 + a3l )+ €,€, (a3210'1° +a%08 + a30) )+

- = - = o o o - = - - o o o
+ (eree + eeer)' (‘1110210'1 +41209,0; +a130,3073 )+ (ere(p + e(per)‘ (011‘1310'1 +41,03,0; + ay3d3303 )+

=~ = - - o o o)l =
+ (eee(p + e(pee)' (‘12103101 T a0, + dy3ds33073 ) "0

(17)

It was assumed above that the spherulites form a hexagonal lattice. In the
microstructure corresponding to hexagonal packing, elastic properties do not depend on
the chosen direction (is isotropic), that is why in the adopted approach we will direct axis

x5 so that the stress state of spherulites is independent of the angle ¢. In this case, we

assume that angle ¢ =0, and taking into account the expressions (11) we get:

_|l==(2 o ol,==12 o, 2 o), == o0, (= ,==\|0 o —
T = lerer (0230'2 + @52‘73 )"‘ 99‘39(02202 + 303 )“‘%%‘71 + (eree + eeer) ‘ (‘73 —0) ) 5’220231‘ Oy

(13)

Comparing the obtained expression (18) to the equation (16), we determine the

unknown components of the stress tensor of spherulites:

o =|Bo8+@5) 5. oh=|Bos+B8) 5, 0 =005, O%y=(05-08) arems-G.

(19)
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According to solving the problem of elasticity of the axially symmetric mode
of deformation field [11, 15], we define unknown components of the stress tensor of

spherulites as follows:

0 =2 B,y =253ty v, -1 = By ) Bcost),
1+v,
dB(cosd
ooy = (lf‘/ (A2 2v, +7)-r +B2)j 65; ),
=-2E, - AO— (3/12 (7+vs)+232)-1>2(cos9)—i(/12.r2(7—4vs)+32)-Mczg9,
+V, 1+v, do
ol = fvs (30-/12 v, —232)-13(cos9)+1+svs (A2 -r2(7—4vs)+@)~%ctg&
(20)

where E, — elasticity modulus of a spherulite; v, — Poisson coefficient of
spherulites; Py(cos @), P(cosd), P,(cos&) — Legendre polynomials of the first kind
of zero, first and second order; A,, 4;,, A,, B, — unknown constants that are of

marginal conditions; » — the radius vector of volume of the spherulites.
We will express the components of the displacement vector in the spherulite in
a spherical coordinate system:

u’' =¢€,u +eyuy +€,u,. (21)

The unknown components of displacement vector in the spherulite are defined

as follows:

i =y (D=2, Blcot)+4 122 (A1+4v,)+ B - Blcot) +
+(A2 -7 -3-4v, +2B, -r)-g(co§)=—2-(1—2vs)-AO -r+2-(A2 -7 -6V, + B, -r)-Pz(cosH),

u9=(A0-r-(5—4VS)+BO-r_l)-dfd(;eosg) (141 T (6—4v )+ Bl) dP(c;)sQ) (22)
(A2 P (T—4v)+B, r )dpg’;‘ﬂ) (Az-r3-(7—4vs)+BZ-r)- 229099),
u;,=0.
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According to [11, 15] tension components at each point of the amorphous

phase of polymer material can be represented as follows:

2-E, D 2-F 6-D, C
G’:’Vl —_ Q 0 +( M ( 2 2

r5 (10-2v )) i-QJ-Pz(cosﬁ),

1
3 l1+v,, r3 l+v, .
2-FE, 4-F, D dP. 6
2+ ol 2(COS )’

3 1+VM r5 3 dé

2 E, D 2E, C 9E. D, 2
oy == 0 _ 2(1-2v,)-—2 220 |-P,(cos )~

3 1+VM r3 1+VM r3 ’ 1+VM r5 3

M

—|2E . .
{ M r3 1+VM 1+VM rs
E, D0+ E [Cz

M
I”3

c, 1-2 E D, | dP. 0
2 Y o . 2} ) (cos )-ct

(10-20v,, )~

o) =- 3
1+VM 7 1+VM 7

E, (C, D, \ dP,(cos®)
+ —(2-4v, )+ : -c1gl.
o R R e

(23)

where E, — elasticity modulus of amorphous matrix; v, — Poisson coefficient of the
amorphous matrix; Q — uniform tension of spherulites interaction; D,, D,, C, —
unknown constants that are of marginal conditions.

Equations (23) show that the tension, arising at some point in the amorphous
matrix, decrease with distance from the beginning of the coordinate system. This is
because the deformed spherulite has some influence on the amorphous phase of
polymer that consists of microfibrils that connect spherulites. And the greater is the
distance from the spherulite to the point of amorphous phase of a polymer, the less
impact it has on the deformation of the spherulites.

Components of displacement vector for amorphous phase are represented as
follows:

M _ = M ,= M, = .M
u —erur +eg7/l0 +e¢u

" (24)

Components of displacement at each point of amorphous phase of polymer

material can be represented as follows:
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w 1=2v, O-r D C 20+v,, -r 3D
o O B[ ) 2 02 8

r r Y 3 r

C, 1+VM.Q-r+D2JOdP2(COS(9)’ 26)

' E, 3
2
uy ={(1-2v,,) +
9( Yo B, 3 A do
u;Z:O.

M

The unknown constants 4,, 4,, B,, Dy, D,, C, can be determined from the

conditions of perfect contact of spherulites and amorphous matrix surfaces, which
take place in case of contact of spherulites, ie when: r =L /2 =a:

M N

M _ S, .M _ S, M _ _S. M _ __S. M _ __S§
Ug =Ug; Uy =U,; 0, =0,; 0y =0p; 0pg =0y (27)

Therefore, solving the system of equations (22)-(25), we can indicate the field
of stress and strain of spherulites at any moment during uniaxial stretching of
polymeric material.

There is the uniform tension of spherulites interaction Q in the systems of

equations (23) and (25), that is not there in systems of equations (22) and (24). This
can be explained as follows: the spherulites are influencing one another through the
amorphous phase that surrounds them. As a result, in the amorphous matrix there is
an additional stress that is caused by the interaction between the spherulites, because
of the impact of specific load on polymeric material.

Satisfying the conditions for an ideal contact (27) at r = d, /2 = a and equating

the coefficients of the Legendre polynomials, we obtain expressions for the unknown

constants A,, A,, B,, Dy, D,, C, through the homogeneous stress interaction Q :

~ 405 ~



-(1-v,)

=0 E v )+ En =2, )
4, =0,

S(-v, Yi+v, Mi+v,)
B, =

E,(1+v,, ) 8-10v )+ E,(7-5v, Y1+v,)’
. 52 (v, NE, (1+v,)-E,(1+v,)) (28)
6E ,(E,(1+v,, )8—10v )+ E (7-5v, N1+v,))’
v, NE (=2v,)-E, (1=2v)))
3E (E,(1+v, )+2E ,(1-2v,))

(v, NE, (+vy )= E (1+v,,)
E (E(1+v, )8-10v, )+E, (7-5v, 1+v,))

C, =0

0:

b

D, =0-

Substituting the meaning of the coefficients from (28) for Egs. (20), (21), (23)
and (26), we obtain a solution of the boundary problem of uniaxial stretching of an
isotropic unbounded amorphous medium containing spherulite. As a result, we will
have the expressions for the components of the displacement vector u and the stress

tensor T :

— for a spherulite

1-v 10(1-+2)
S_E .Q- u a - Py(cos6) |,
or = £ Q (ES(1+VM)+EM(1_2VS)+Es(1+VM)(s_1oVM)+EM(7_5VM)(1+VS) 3(cos )J
o = E 0. 5(1—1/”%4) .sz(cosé’)
ro s E(1+v, )8=10v,)+E, (7=5v, Y1+v,) a0
1-v 5(1—1/2) dP,(cosb) J
S_E.O. M - u 1 4P, (cosO)+ 22T cro | |,
% SQ(ES(1+VM)+EM(1_2VS) Es(1+VM)(s_1oVM)+EM(7_5VM)(1+VS)( sleos0)+ = L erg
s 1-v 5(1—1/2) dP,(cos6) )
o= £ 0 [ES(1+VM)+EM(1—2VS)+Es(l+VM)(S—lOVM)+EM(7—5VM)(1+VS)( 3(cos6) + do clg
(29)
1-2 10 (1 1
W =0 r-(1-v,) Vs n (v, M+v) .Py(cos6) |,
"V E(+v, )+E, (1-2v,) E,(+v, Y8-10v, )+E, (7-5v, N1+v,)
S _ 0. 5(1—VJ§X1+VS) sz(cosé’)
u — . . . 5
¢ E,(1+v,)8-10v, )+E, (7-5v, N1+v,)  db
u(f, =0.
(30)
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— for an amorphous matrix

szg(uz{m B0, BBl (540, 1) )

2 E(1+V )+2E (1 ZVS) 3 Es(l+V.w)(g_lov.\4)+Ew(7_5V.w)(l+Vs
( 1 2V 1 2V) Ev(l"'v.w)_E.w(l'i'Vs)

1+V +2E 1 2v )] E(1+V.w)(8_10‘/.w)+E.w(7_5V.w)(1+Vs)

N S

[ (1-2v,) Pz(cosﬁ)—(s(l—2v‘4)+1)d5(cose)ctg€D,
3 de
ol =0 2 E‘I 2v,) (1"2V~*‘)—31f>2(cos0)— E(1+v,)-E,(1+v,) (113132( ) SdB(cosﬁ)Ctgﬁjb
3 E(+v,) +2E (1-2v,) 3 E(1+v, )8-10v,)+E (7-5v, )1 +v)\ 12 3 de
' 0. lsz cos@ E(l+v,)-E,(1+v,) -(5(1+v )_4)sz(0086’)
E s E(+v,)8-10v,)+E,(7-5, )1+v,) 6" do |

(1)

" :Q'r.[l—ZVM (v NE(-2v,)-E, (1-2v,)) +2(1+VM),P2(COSQ)_

" 3E, 3-r-E, (E,(1+v,)+2E, (1-2v,))
(+v, NE,Q+v, )-E, (1+v,))

B NE U+, ) - E, T+ )).(%(I—SVM)—3)})2(005‘9)}

E (E,(+v, 8-10v, )+E, (7-5v, N1+v,

Q-r-[HzVM— (1+v XE,(1+v,)-E, (1-2v,)) ))(2(1—2%1)“)]'dPZ(COSQ)

- 3E,  E,(E,8-10v N1+v )+E, (1-5v, Yl+v, do

Z/le—

2

u, =0.
(32)
To determine the homogeneous interaction stress O, we use the method of
successive regularization [11], which allows us express the potential energy of the

elastic deformation U through the surface integral:

__ZJalkgkdU__z Jaln zdfn: (33)
k 1V
where df, is an element with normal » to the surface S, bounding the volume V;

c,,, u; — the components of the stress tensor T, and the displacement vector u,

in>

acting on the surface S,. Using the first representation of elastic energy through the

average stress meanings ¢, and deformations &,
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and expressing the components of the displacement vector u™ in the spherical

coordinate system through the average meaning of the deformation &, we find the

elastic potential for the amorphous-crystalline body of the spherulite structure

” [G;” £ r(0052 0-v, sin’ 9)— oy € r(1+vM)sin90056’]r2 sin@df@dp = %5151-

($)

L
2V
(35)

Substituting into the formula obtained the meaning of the stresses o, and o,y
from equation (31), integrating (35) on @ in the interval 0 <@ <27, and on @ in the
interval 0 <@ <7z (thus reducing the unit cell to the concentric with the spherulite
sphere with the radius 7), we determine the homogeneous stress interaction Q

between the spherulites through the given average stretching stresses &, :

_ El
Q_1+2 2 (1_2VM)(ES(1_2VM)_EM(1_2VS))+ (7_5VM)(1+VMXES(1+VM)_EM(1+VS)) '
3% E(+v,)+2E, (1-2v,) E(+v, )8-10v,)+E, (7-5v, )1+v,)
(36)

The components of the stress tensor T, and the displacement vector u can be

found from Egs. (29), (30), (31) and (32) by substituting for them the meaning of the

interaction stress from Eq. (36). The components of the strain tensor T, are obtained

from the following equation:

ou 1 Ou u u u
g L. 89=——‘9+—r; 8(p=—96tg9+—r;
or r 00 r r r
10u. oOu u
_ ro4 o o .

89—_ - 89 =& =0.
oy 00  or po 0

(37)

In the structure of a spherulite £, we replace the right side of equation (35)
with the second energy representation [11], and the stresses o' and o}y in the

integrand function with the average stresses o, :

Mo_ = 2 ; — .
o) =0, cos” 0, o,y =—0,sin@cosd.

As a result, we get
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—2
ZVH (u cos? - Uy smé’cosé?)r sm@d@d(p—;——lE (38)

($)

Substituting for (38) the values of the displacements u," and uy from (32), the
value of the homogeneous interaction stress O from (36) and solving expression (38)

in relation to £, we find the elastic modulus of the amorphous crystal environment of
the spherulite structure:

((1 2w NE,(1-2v,)-E, (1-2v,) (-5 )1+v NE(+v, )-E, (+Vv,))

E(1+v,)+2E, (1-2v,) ’ E(+v,)8-10v, )+ E, (7-5v, N1+ VS)J

2
Y4
1
3

(39)
and for the bulk modulus of elasticity:
E(1+v,)+242E,(1-2v,)+2E, [I- 72 J1-2v,)

3 (- 2 M- 2v, W v, )+ 22E, (+v, i-2v,)+ 2E, (1-2v, Y1 —2v,)|
(40)

The elastic properties of any isotropic material are due to two independent

constants. The second constant, the bulk modulus Ej, is determined from the
consideration of uniform expansion (o, =0, =0, =0 ) of an amorphous crystalline
isotropic medium of a spheruline structure. Repeating the reasoning mentioned

above, we obtain expressions for the stress characterizing the homogeneous

interaction between spherulites QO :

(I-2v N1+v, JE,(1+v,)+2E, (1-2v,)|

0= E,(1+v,)+2 7 °E,(1-2v, )+2E (1 z* fi-2v,)

(41)

The effective constants £, and E make it possible to determine other elastic

constants of the amorphous crystalline polymer — the Poisson coefficient v and the
shear modulus G':
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p ((1 +v NE(-2v,)-E,(1-2v,) 4(4-5v, +v, NE(+v,)-E,(1+v,))

E(1+v,)+2E, (1-2v,) E(+v,)8-10v, )+ E, (7-5v, N1+v,)

J'



3E, —E 3E,E
y="TV_—. G= v

== (42)
6E, 9, —E

Expressions (39)...(42) make it possible to predict the elastic properties of
amorphous crystalline polymers depending on the degree of crystallinity y, and require
in the first approximation the knowledge of the elastic properties of the amorphous phase

E,, v, and spherulites E ., v,. If the elastic constants of different polymers in the

M
amorphous state can be measured or taken from reference literature, then the use of the

elasticity modulus of the crystal lattice of polymers E_ as the constant of the crystalline

phase, as is done in most papers [16...21], in our opinion, is not entirely correct. Firstly,
this is associated with the complex structure of spherulites [7], which is the third level of
SMS, after crystallites and lamellas, in which both crystallites and lamellas, having a
different orientation in space, are in the inter-amorphous interlayers, which makes it
impossible to examine neither spherulites nor other structural formations as single
crystalline morphoses. Secondly, in some works, for example [3, 4, 22], it has been
established that the spherulites deform with the rest of the polymer mass as a single unit
(Fig.2) [22], even in the case of large final deformations, stretching in the direction of
the load and only slightly lagging behind the deformation of the macro sample. When

the ratio between the elastic constants of crystallites £, and the amorphous phase E,
is, for example, for polyethylene ~5-10°(E, /E,, =250-10°/0,05-10° MPa) [16], this

phenomenon would not be observed.
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Figure 4 — Dependence of deformation of spherulites £, on the deformation £ of polypropylene
film (curves 1, 3) and polyethylene film (curve 2) at T=20 (2, 1; 0,2) and T =90 (e, 3)
Figure 5 — Dependences of the elastic modulus £ of polyethylene (e, scale of values of A) and

polypropylene (o, scale of meanings of B) on the degree of crystallinity ¥
1-4 - data obtained in the work; 5, 6 - results from [23, 21], respectively
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As elastic constants of spherulites E, it is proposed to use the values of the

elastic constants determined from Egs. (39) ... (42) for the degree of crystallinity of

Xmax» corresponding to the maximum possible for a given polymer, under the
assumption of the ideal structure of the spherulites, When substituting, for example,

in Eq. (39) the quantities E,_ as E: . The obtained meanings of the elasticity modulus

E" was subsequently used as the elasticity modulus of spherulites E, in the

prediction of elastic properties.

Summary & Conclusions

The verification of the model described above was carried out on polyethylene
and polyethylene terephthalate, which are representatives of highly crystalline and
intermediate crystalline polymers. The dependence of the polyethylene modulus of
elasticity (curves 1 and 2, the scale of meanings A) and polyethylene terephthalate

(curves 3 and 4, the scale of meanings of B) on the degree of crystallinity of y, were

shown in Fig. 4. Curves 1 and 3 were obtained in the approximation of the ideal

structure of spherulites (E, = E, ), and curves 2 and 4 were obtained using the results of

the first approximation (£, = E)as E , and v . The initial data for the construction of
curves 2 and 4: for polyethylene E, =1020MPa, v, =0,2, E,, =77 MPa, v,, =0,39;
for polyethylene terephthalate £, =8239 MPa, v, =0,2, E,, =2000 MPa, v,, =0,39.

The analysis of data in Fig. 5 showed a satisfactory coincidence of the
predicted and measured meaning of the Young's modulus, the largest spread of
meaning does not exceeded 12% for polyethylene terephthalate and 15% for
polyethylene.

Thus, the presented model satisfactorily reflects the spheruline structure of
amorphous-crystalline polymers, even in the approximation of homogeneous interaction.
The elastic constants £, K, obtained as a result of the construction of the model, are used
as input data for the construction of the SMS mode, formed in the process of

orientational drawing of amorphous crystalline polymers of the spheruline structure.
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